Counters

• Counters count events
 – Number of events stored in a register
 – Each event increments this register
Timers (1)

- Timers count clock ticks
 - Primary source is system clock
 - Clock speed is reduced by a prescaler

Timers and Interrupts

\[
f_{\text{CLK}} = \frac{f_{\text{SYS}}}{n}
\]

- \(f_{\text{SYS}} \): System Frequency
- \(f_{\text{CLK}} \): Clock Frequency
- \(n \): Prescaler Value
Timers (2)

• Operating mode

CNT: counter value, PER: period = TOP, CLK: clock ticks
Timers (3)

• Operating mode (continued)

— Example: TOP = 5

\[T = (\text{TOP}+1) \cdot t_{\text{CLK}} \]

\(T \): timer period, \(t_{\text{CLK}} \): clock period
Timers (4)

• Timer Module

CTRL: Control Register
CNT: Counter Value
DIV: Clock Divider
TOP: Top Value
OVF: Overflow
PWM (1)

- Pulse-Width Modulation
 - Digital pins are either high or low
 - Time enables intermediate values
 - Inertia for averaging necessary
 - Alternative: Digital Analog Converter
PWM (2)

- Generation

$$d = \frac{t_{on}}{T} = \frac{CMP + 1}{PER + 1}$$

- d: Duty Cycle
- t_{on}: On Time
- T: Period (PER)
PWM (3)

• Architecture
PWM (4)

- PWM Module

CTRL: Control Register
CNT: Counter Value
PER: Period
CMP: Compare Value
Interrupts (1)

• Generated by hardware
• Indicated by an interrupt line
• Occur unpredictably
• Tell that something happened
• Examples
 – Port interrupt
 – Timer interrupt
 – Data ready interrupt
Interrupts (2)

• Interrupt Processing
 – Execution of code is interrupted
 – Interrupt service route (ISR) is executed
 – Execution of original code is resumed.
Interrupts (3)

- **Interrupt Controller**
 - Handles Interrupts
 - **Queueing**
 - Which one is served first?
 - **Nesting**
 - Based on priority levels
 - Which interrupt interrupts other interrupts?
 - **Forwarding**
 - Notifies the CPU of an interrupt request (IRQ)

[Diagram of Interrupt Controller and Microprocessor with IRQ Vector]